Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Magn Reson Med ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730562

RESUMEN

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

2.
NMR Biomed ; 37(5): e5097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269568

RESUMEN

PURPOSE: Liver T1 mapping techniques typically require long breath holds or long scan time in free-breathing, need correction for B 1 + inhomogeneities and process composite (water and fat) signals. The purpose of this work is to accelerate the multi-slice acquisition of liver water selective T1 (wT1) mapping in a single breath hold, improving the k-space sampling efficiency. METHODS: The proposed continuous inversion-recovery (IR) Look-Locker methodology combines a single-shot gradient echo spiral readout, Dixon processing and a dictionary-based analysis for liver wT1 mapping at 3 T. The sequence parameters were adapted to obtain short scan times. The influence of fat, B 1 + inhomogeneities and TE on the estimation of T1 was first assessed using simulations. The proposed method was then validated in a phantom and in 10 volunteers, comparing it with MRS and the modified Look-Locker inversion-recovery (MOLLI) method. Finally, the clinical feasibility was investigated by comparing wT1 maps with clinical scans in nine patients. RESULTS: The phantom results are in good agreement with MRS. The proposed method encodes the IR-curve for the liver wT1 estimation, is minimally sensitive to B 1 + inhomogeneities and acquires one slice in 1.2 s. The volunteer results confirmed the multi-slice capability of the proposed method, acquiring nine slices in a breath hold of 11 s. The present work shows robustness to B 1 + inhomogeneities ( wT 1 , No B 1 + = 1.07 wT 1 , B 1 + - 45.63 , R 2 = 0.99 ) , good repeatability ( wT 1 , 2 ° = 1 . 0 wT 1 , 1 ° - 2.14 , R 2 = 0.96 ) and is in better agreement with MRS ( wT 1 = 0.92 wT 1 MRS + 103.28 , R 2 = 0.38 ) than is MOLLI ( wT 1 MOLLI = 0.76 wT 1 MRS + 254.43 , R 2 = 0.44 ) . The wT1 maps in patients captured diverse lesions, thus showing their clinical feasibility. CONCLUSION: A single-shot spiral acquisition can be combined with a continuous IR Look-Locker method to perform rapid repeatable multi-slice liver water T1 mapping at a rate of 1.2 s per slice without a B 1 + map. The proposed method is suitable for nine-slice liver clinical applications acquired in a single breath hold of 11 s.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Abdomen , Respiración , Fantasmas de Imagen , Reproducibilidad de los Resultados , Corazón
3.
MAGMA ; 36(3): 355-373, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171689

RESUMEN

OBJECT: Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system. MATERIALS AND METHODS: By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system. RESULTS: Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers. DISCUSSION: Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Protones
4.
Magn Reson Imaging ; 101: 25-34, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37015305

RESUMEN

MR fingerprinting (MRF) enables fast multiparametric quantitative imaging with a single acquisition and has been shown to improve diagnosis of prostate cancer. However, most prostate MRF studies were performed with spiral acquisitions that are sensitive to B0 inhomogeneities and consequent blurring. In this work, a radial MRF acquisition with a novel subspace reconstruction technique was developed to enable fast T1/T2 mapping in the prostate in under 4 min. The subspace reconstruction exploits the extensive temporal correlations in the MRF dictionary to pre-compute a low dimensional space for the solution and thus reduce the number of radial spokes to accelerate the acquisition. Iterative reconstruction with the subspace model and additional regularization of the signal representation in the subspace is performed to minimize the number of spokes and maintain matching quality and SNR. Reconstruction accuracy was assessed using the ISMRM NIST phantom. In-vivo validation was performed on two healthy subjects and two prostate cancer patients undergoing radiation therapy. The longitudinal repeatability was quantified using the concordance correlation coefficient (CCC) in one of the healthy subjects by repeated scans over 1 year. One prostate cancer patient was scanned at three time points, before initiating therapy and following brachytherapy and external beam radiation. Changes in the T1/T2 maps obtained with the proposed method were quantified. The prostate, peripheral and transitional zones, and visible dominant lesion were delineated for each study, and the statistics and distribution of the quantitative mapping values were analyzed. Significant image quality improvements compared with standard reconstruction methods were obtained with the proposed subspace reconstruction method. A notable decrease in the spread of the T1/T2 values without biasing the estimated mean values was observed with the subspace reconstruction and agreed with reported literature values. The subspace reconstruction enabled visualization of small differences in T1/T2 values in the tumor region within the peripheral zone. Longitudinal imaging of a volunteer subject yielded CCC of 0.89 for MRF T1, and 0.81 for MRF T2 in the prostate gland. Longitudinal imaging of the prostate patient confirmed the feasibility of capturing radiation treatment related changes. This work is a proof-of-concept for a high resolution and fast quantitative mapping using golden-angle radial MRF combined with a subspace reconstruction technique for longitudinal treatment response assessment in subjects undergoing radiation treatment.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Voluntarios Sanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo
5.
Magn Reson Med ; 89(5): 2005-2013, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36585913

RESUMEN

PURPOSE: To evaluate a silent MR active catheter tracking sequence that allows conducting catheter interventions with low acoustic noise levels. METHODS: To reduce the acoustic noise associated with MR catheter tracking, we implemented a technique previously used in conventional MRI. The gradient waveforms are modified to reduce the sound pressure level (SPL) and avoid acoustic resonances of the MRI system. The efficacy of the noise reduction was assessed by software-predicted SPL and verified by measurements. Furthermore, the quality of the catheter tracking signal was assessed in a phantom experiment and during interventional cardiovascular MRI sessions targeted at isthmus-related flutter ablation. RESULTS: The maximum measured SPL in the scanner room was 104 dB(A) for real-time imaging, and 88 dB(A) and 69 dB(A) for conventional and silent tracking, respectively. The SPL measured at different positions in the MR suite using silent tracking were 65-69 dB(A), and thus within the range of a normal conversation. Equivalent signal quality and tracking accuracy were obtained using the silent variant of the catheter tracking sequence. CONCLUSION: Our results indicate that silent MR catheter tracking capabilities are identical to conventional catheter tracking. The achieved acoustic noise reduction comes at no penalty in terms of tracking quality or temporal resolution, improves comfort and safety, and can overcome the need for MR-compatible communication equipment and background noise suppression during the actual interventional procedure.


Asunto(s)
Imagen por Resonancia Magnética Intervencional , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Catéteres , Programas Informáticos , Imagen por Resonancia Magnética Intervencional/métodos , Fantasmas de Imagen
6.
J Magn Reson Imaging ; 53(4): 1253-1265, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33124081

RESUMEN

BACKGROUND: Dixon cardiac magnetic resonance fingerprinting (MRF) has been recently introduced to simultaneously provide water T1 , water T2 , and fat fraction (FF) maps. PURPOSE: To assess Dixon cardiac MRF repeatability in healthy subjects and its clinical feasibility in a cohort of patients with cardiovascular disease. POPULATION: T1MES phantom, water-fat phantom, 11 healthy subjects and 19 patients with suspected cardiovascular disease. STUDY TYPE: Prospective. FIELD STRENGTH/SEQUENCE: 1.5T, inversion recovery spin echo (IRSE), multiecho spin echo (MESE), modified Look-Locker inversion recovery (MOLLI), T2 gradient spin echo (T2 -GRASE), 6-echo gradient rewound echo (GRE), and Dixon cardiac MRF. ASSESSMENT: Dixon cardiac MRF precision was assessed through repeated scans against conventional MOLLI, T2 -GRASE, and PDFF in phantom and 11 healthy subjects. Dixon cardiac MRF native T1 , T2 , FF, postcontrast T1 and synthetic extracellular volume (ECV) maps were assessed in 19 patients in comparison to conventional sequences. Measurements in patients were performed in the septum and in late gadolinium enhanced (LGE) areas and assessed using mean value distributions, correlation, and Bland-Altman plots. Image quality and diagnostic confidence were assessed by three experts using 5-point scoring scales. STATISTICAL TESTS: Paired Wilcoxon rank signed test and paired t-tests were applied. Statistical significance was indicated by *(P < 0.05). RESULTS: Dixon cardiac MRF showed good overall precision in phantom and in vivo. Septal average repeatability was ~23 msec for T1 , ~2.2 msec for T2 , and ~1% for FF. Biases in healthy subjects/patients were measured at +37 msec*/+60 msec* and -8.8 msec*/-8 msec* when compared to MOLLI and T2 -GRASE, respectively. No statistically significant differences in postcontrast T1 (P = 0.17) and synthetic ECV (P = 0.19) measurements were observed in patients. DATA CONCLUSION: Dixon cardiac MRF attained good overall precision in phantom and healthy subjects, while providing coregistered T1 , T2 , and fat fraction maps in a single breath-hold scan with similar or better image quality than conventional methods in patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados
7.
Magn Reson Med ; 85(4): 1865-1880, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33118649

RESUMEN

PURPOSE: Magnetic resonance fingerprinting (MRF) offers rapid quantitative imaging but may be subject to confounding effects (CE) if these are not included in the model-based reconstruction. This study characterizes the influence of in-plane B1+ , slice profile and diffusion effects on T1 and T2 estimation in the female breast at 1.5T. METHODS: Simulations were used to predict the influence of each CE on the accuracy of MRF and to investigate the influence of electronic noise and spiral aliasing artefacts. The experimentally observed bias in regions of fibroglandular tissue (FGT) and fatty tissue (FT) was analyzed for undersampled spiral breast MRF data of 6 healthy volunteers by performing MRF reconstruction with and without a CE. RESULTS: Theoretic analysis predicts T1 under-/T2 overestimation if the nominal flip angles are underestimated and inversely, T1 under-/T2 overestimation if omitting slice profile correction, and T1 under-/T2 underestimation if omitting diffusion in the signal model. Averaged over repeated signal simulations, including spiral aliasing artefacts affected precision more than accuracy. Strong in-plane B1+ effects occurred in vivo, causing T2 left-right inhomogeneity between both breasts. Their correction decreased the T2 difference from 29 to 5 ms in FGT and from 29 to 9 ms in FT. Slice profile correction affected FGT T2 most strongly, resulting in -22% smaller values. For the employed spoiler gradient strengths, diffusion did not affect the parameter maps, corresponding well with theoretic predictions. CONCLUSION: Understanding CEs and their relative significance for an MRF sequence is important when defining an MRF signal model for accurate parameter mapping.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Artefactos , Encéfalo , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
8.
NMR Biomed ; 33(11): e4389, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783321

RESUMEN

Parkinson's disease (PD) affects more than six million people, but reliable MRI biomarkers with which to diagnose patients have not been established. Magnetic resonance fingerprinting (MRF) is a recent quantitative technique that can provide relaxometric maps from a single sequence. The purpose of this study is to assess the potential of MRF to identify PD in patients and their disease severity, as well as to evaluate comfort during MRF. Twenty-five PD patients and 25 matching controls underwent 3 T MRI, including an axial 2D spoiled gradient echo MRF sequence. T1 and T2 maps were generated by voxel-wise matching the measured MRF signal to a precomputed dictionary. All participants also received standard inversion recovery T1 and multi-echo T2 mapping. An ROI-based analysis of relaxation times was performed. Differences between patients and controls as well as techniques were determined by logistic regression, Spearman correlation and t-test. Patients were asked to estimate the subjective comfort of the MRF sequence. Both MRF-based T1 and T2 mapping discriminated patients from controls: T1 relaxation times differed most in cortical grey matter (PD 1337 ± 38 vs. control 1386 ± 37 ms; mean ± SD; P = .0001) and, in combination with normal-appearing white matter, enabled correct discrimination in 85.7% of cases (sensitivity 83.3%; specificity 88.0%; receiver-operating characteristic [ROC]) area under the curve [AUC] 0.87), while for T2 mapping the left putamen was the strongest classifier (40.54 ± 6.28 vs. 34.17 ± 4.96 ms; P = .0001), enabling differentiation of groups in 84.0% of all cases (sensitivity 80.0%; specificity 88.0%; ROC AUC 0.87). Relaxation time differences were not associated with disease severity. Standard mapping techniques generated significantly different relaxation time values and identified other structures as different between groups other than MRF. Twenty-three out of 25 PD patients preferred the MRF examination instead of a standard MRI. MRF-based mapping can identify PD patients with good comfort but needs further assessment regarding disease severity identification and its potential for comparability with standard mapping technique results.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Área Bajo la Curva , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Proyectos Piloto , Curva ROC , Encuestas y Cuestionarios
9.
NMR Biomed ; 33(10): e4370, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32696590

RESUMEN

PURPOSE: To develop a novel respiratory motion compensated three-dimensional (3D) cardiac magnetic resonance fingerprinting (cMRF) approach for whole-heart myocardial T1 and T2 mapping from a free-breathing scan. METHODS: Two-dimensional (2D) cMRF has been recently proposed for simultaneous, co-registered T1 and T2 mapping from a breath-hold scan; however, coverage is limited. Here we propose a novel respiratory motion compensated 3D cMRF approach for whole-heart myocardial T1 and T2 tissue characterization from a free-breathing scan. Variable inversion recovery and T2 preparation modules are used for parametric encoding, respiratory bellows driven localized autofocus is proposed for beat-to-beat translation motion correction and a subspace regularized reconstruction is employed to accelerate the scan. The proposed 3D cMRF approach was evaluated in a standardized T1 /T2 phantom in comparison with reference spin echo values and in 10 healthy subjects in comparison with standard 2D MOLLI, SASHA and T2 -GraSE mapping techniques at 1.5 T. RESULTS: 3D cMRF T1 and T2 measurements were generally in good agreement with reference spin echo values in the phantom experiments, with relative errors of 2.9% and 3.8% for T1 and T2 (T2 < 100 ms), respectively. in vivo left ventricle (LV) myocardial T1 values were 1054 ± 19 ms for MOLLI, 1146 ± 20 ms for SASHA and 1093 ± 24 ms for the proposed 3D cMRF; corresponding T2 values were 51.8 ± 1.6 ms for T2-GraSE and 44.6 ± 2.0 ms for 3D cMRF. LV coefficients of variation were 7.6 ± 1.6% for MOLLI, 12.1 ± 2.7% for SASHA and 5.8 ± 0.8% for 3D cMRF T1 , and 10.5 ± 1.4% for T2-GraSE and 11.7 ± 1.6% for 3D cMRF T2 . CONCLUSION: The proposed 3D cMRF can provide whole-heart, simultaneous and co-registered T1 and T2 maps with accuracy and precision comparable to those of clinical standards in a single free-breathing scan of about 7 min.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Respiración , Humanos , Fantasmas de Imagen
10.
Neuroimage ; 219: 117014, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32534123

RESUMEN

Demyelination is the key pathological process in multiple sclerosis (MS). The extent of demyelination can be quantified with magnetic resonance imaging by assessing the myelin water fraction (MWF). However, long computation times and high noise sensitivity hinder the translation of MWF imaging to clinical practice. In this work, we introduce a more efficient and noise robust method to determine the MWF using a joint sparsity constraint and a pre-computed B1+-T2 dictionary. A single component analysis with this dictionary is used in an initial step to obtain a B1+ map. The T2 distribution is then determined from a reduced dictionary corresponding to the estimated B1+ map using a combination of a non-negativity and a joint sparsity constraint. The non-negativity constraint ensures that a feasible solution with non-negative contribution of each T2 component is obtained. The joint sparsity constraint restricts the T2 distribution to a small set of T2 relaxation times shared between all voxels and reduces the noise sensitivity. The applied Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm can be implemented efficiently, reducing the computation time by a factor of 50 compared to the commonly used regularized non-negative least squares algorithm. The proposed method was validated in simulations and in 8 healthy subjects with a 3D multi-echo gradient- and spin echo scan at 3 â€‹T. In simulations, the absolute error in the MWF decreased from 0.031 to 0.013 compared to the regularized NNLS algorithm for SNR â€‹= â€‹250. The in vivo results were consistent with values reported in literature and improved MWF-quantification was obtained especially in the frontal white matter. The maximum standard deviation in mean MWF in different regions of interest between subjects was smaller for the proposed method (0.0193) compared to the regularized NNLS algorithm (0.0266). In conclusion, the proposed method for MWF estimation is less computationally expensive and less susceptible to noise compared to state of the art methods. These improvements might be an important step towards clinical translation of MWF measurements.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Neurológicos , Agua
11.
Magn Reson Med ; 84(2): 646-662, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31898834

RESUMEN

PURPOSE: To minimize the known biases introduced by fat in rapid T1 and T2 quantification in muscle using a single-run magnetic resonance fingerprinting (MRF) water-fat separation sequence. METHODS: The single-run MRF acquisition uses an alternating in-phase/out-of-phase TE pattern to achieve water-fat separation based on a 2-point DIXON method. Conjugate phase reconstruction and fat deblurring were applied to correct for B0 inhomogeneities and chemical shift blurring. Water and fat signals were matched to the on-resonance MRF dictionary. The method was first tested in a multicompartment phantom. To test whether the approach is capable of measuring small in vivo dynamic changes in relaxation times, experiments were run in 9 healthy volunteers; parameter values were compared with and without water-fat separation during muscle recovery after plantar flexion exercise. RESULTS: Phantom results show the robustness of the water-fat resolving MRF approach to undersampling. Parameter maps in volunteers show a significant (P < .01) increase in T1 (105 ± 94 ms) and decrease in T2 (14 ± 6 ms) when using water-fat-separated MRF, suggesting improved parameter quantification by reducing the well-known biases introduced by fat. Exercise results showed smooth T1 and T2 recovery curves. CONCLUSION: Water-fat separation using conjugate phase reconstruction is possible within a single-run MRF scan. This technique can be used to rapidly map relaxation times in studies requiring dynamic scanning, in which the presence of fat is problematic.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Agua , Algoritmos , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Músculos , Fantasmas de Imagen
12.
Magn Reson Med ; 83(2): 521-534, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31418918

RESUMEN

PURPOSE: To develop an efficient algorithm for multi-component analysis of magnetic resonance fingerprinting (MRF) data without making a priori assumptions about the exact number of tissues or their relaxation properties. METHODS: Different tissues or components within a voxel are potentially separable in MRF because of their distinct signal evolutions. The observed signal evolution in each voxel can be described as a linear combination of the signals for each component with a non-negative weight. An assumption that only a small number of components are present in the measured field of view is usually imposed in the interpretation of multi-component data. In this work, a joint sparsity constraint is introduced to utilize this additional prior knowledge in the multi-component analysis of MRF data. A new algorithm combining joint sparsity and non-negativity constraints is proposed and compared to state-of-the-art multi-component MRF approaches in simulations and brain MRF scans of 11 healthy volunteers. RESULTS: Simulations and in vivo measurements show reduced noise in the estimated tissue fraction maps compared to previously proposed methods. Applying the proposed algorithm to the brain data resulted in 4 or 5 components, which could be attributed to different brain structures, consistent with previous multi-component MRF publications. CONCLUSIONS: The proposed algorithm is faster than previously proposed methods for multi-component MRF and the simulations suggest improved accuracy and precision of the estimated weights. The results are easier to interpret compared to voxel-wise methods, which combined with the improved speed is an important step toward clinical evaluation of multi-component MRF.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Teorema de Bayes , Simulación por Computador , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Neuroimagen , Fantasmas de Imagen
13.
Magn Reson Med ; 83(6): 2107-2123, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31736146

RESUMEN

PURPOSE: Cardiac magnetic resonance fingerprinting (cMRF) has been recently introduced to simultaneously provide T1 , T2 , and M0 maps. Here, we develop a 3-point Dixon-cMRF approach to enable simultaneous water specific T1 , T2 , and M0 mapping of the heart and fat fraction (FF) estimation in a single breath-hold scan. METHODS: Dixon-cMRF is achieved by combining cMRF with several innovations that were previously introduced for other applications, including a 3-echo GRE acquisition with golden angle radial readout and a high-dimensional low-rank tensor constrained reconstruction to recover the highly undersampled time series images for each echo. Water-fat separation of the Dixon-cMRF time series is performed to allow for water- and fat-specific T1 , T2 , and M0 estimation, whereas FF estimation is extracted from the M0 maps. Dixon-cMRF was evaluated in a standardized T1 -T2 phantom, in a water-fat phantom, and in healthy subjects in comparison to current clinical standards: MOLLI, SASHA, T2 -GRASE, and 6-point Dixon proton density FF (PDFF) mapping. RESULTS: Dixon-cMRF water T1 and T2 maps showed good agreement with reference T1 and T2 mapping techniques (R2 > 0.99 and maximum normalized RMSE ~5%) in a standardized phantom. Good agreement was also observed between Dixon-cMRF FF and reference PDFF (R2 > 0.99) and between Dixon-cMRF water T1 and T2 and water selective T1 and T2 maps (R2 > 0.99) in a water-fat phantom. In vivo Dixon-cMRF water T1 values were in good agreement with MOLLI and water T2 values were slightly underestimated when compared to T2 -GRASE. Average myocardium septal T1 values were 1129 ± 38 ms, 1026 ± 28 ms, and 1045 ± 32 ms for SASHA, MOLLI, and the proposed water Dixon-cMRF. Average T2 values were 51.7 ± 2.2 ms and 42.8 ± 2.6 ms for T2 -GRASE and water Dixon-cMRF, respectively. Dixon-cMRF FF maps showed good agreement with in vivo PDFF measurements (R2 > 0.98) and average FF in the septum was measured at 1.3%. CONCLUSION: The proposed Dixon-cMRF allows to simultaneously quantify myocardial water T1 , water T2 , and FF in a single breath-hold scan, enabling multi-parametric T1 , T2 , and fat characterization. Moreover, reduced T1 and T2 quantification bias caused by water-fat partial volume was demonstrated in phantom experiments.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Agua , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
14.
Magn Reson Med ; 83(4): 1192-1207, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31631385

RESUMEN

PURPOSE: Magnetic resonance fingerprinting (MRF) with spiral readout enables rapid quantification of tissue relaxation times. However, it is prone to blurring because of off-resonance effects. Hence, fat blurring into adjacent regions might prevent identification of small tumors by their quantitative T1 and T2 values. This study aims to correct for the blurring artifacts, thereby enabling fast quantitative mapping in the female breast. METHODS: The impact of fat blurring on spiral MRF results was first assessed by simulations. Then, MRF was combined with 3-point Dixon water-fat separation and spiral blurring correction based on conjugate phase reconstruction. The approach was assessed in phantom experiments and compared to Cartesian reference measurements, namely inversion recovery (IR), multi-echo spin echo (MESE), and Cartesian MRF, by normalized root-mean-square error (NRMSE) and SD calculations. Feasibility is further demonstrated in vivo for quantitative breast measurements of 6 healthy female volunteers, age range 24-31 y. RESULTS: In the phantom experiment, the blurring correction reduced the NRMSE per phantom vial on average from 16% to 8% for T1 and from 18% to 11% for T2 when comparing spiral MRF to IR/MESE sequences. When comparing to Cartesian MRF, the NRMSE reduced from 15% to 8% for T1 and from 12% to 7% for T2 . Furthermore, SDs decreased. In vivo, the blurring correction removed fat bias on T1 /T2 from a rim of ~7-8 mm width adjacent to fatty structures. CONCLUSION: The blurring correction for spiral MRF yields improved quantitative maps in the presence of water and fat.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Agua , Adulto , Algoritmos , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Adulto Joven
15.
NMR Biomed ; 32(11): e4157, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393654

RESUMEN

Several very rare forms of dementia are associated with characteristic focal atrophy predominantly of the frontal and/or temporal lobes and currently lack imaging solutions to monitor disease. Magnetic resonance fingerprinting (MRF) is a recently developed technique providing quantitative relaxivity maps and images with various tissue contrasts out of a single sequence acquisition. This pilot study explores the utility of MRF-based T1 and T2 mapping to discover focal differences in relaxation times between patients with frontotemporal lobe degenerative dementia and healthy controls. 8 patients and 30 healthy controls underwent a 3 T MRI including an axial 2D spoiled gradient echo MRF sequence. T1 and T2 relaxation maps were generated based on an extended phase graphs algorithm-founded dictionary involving inner product pattern matching. A region of interest (ROI)-based analysis of T1 and T2 relaxation times was performed with FSL and ITK-SNAP. Depending on the brain region analyzed, T1 relaxation times were up to 10.28% longer in patients than in controls reaching significant differences in cortical gray matter (P = .047) and global white matter (P = .023) as well as in both hippocampi (P = .001 left; P = .027 right). T2 relaxation times were similarly longer in the hippocampus by up to 19.18% in patients compared with controls. The clinically most affected patient had the most control-deviant relaxation times. There was a strong correlation of T1 relaxation time in the amygdala with duration of the clinically manifest disease (Spearman Rho = .94; P = .001) and of T1 relaxation times in the left hippocampus with disease severity (Rho = .90, P = .002). In conclusion, MRF-based relaxometry is a promising and time-saving new MRI tool to study focal cerebral alterations and identify patients with frontotemporal lobe degeneration. To validate the results of this pilot study, MRF is worth further exploration as a diagnostic tool in neurodegenerative diseases.


Asunto(s)
Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/diagnóstico , Imagen por Resonancia Magnética , Anciano , Estudios de Casos y Controles , Demencia/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Proyectos Piloto , Factores de Tiempo
16.
Magn Reson Med ; 81(4): 2551-2565, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30421448

RESUMEN

PURPOSE: To explore the feasibility of MR Fingerprinting (MRF) to rapidly quantify relaxation times in the human eye at 7T, and to provide a data acquisition and processing framework for future tissue characterization in eye tumor patients. METHODS: In this single-element receive coil MRF approach with Cartesian sampling, undersampling is used to shorten scan time and, therefore, to reduce the degree of motion artifacts. For reconstruction, approaches based on compressed sensing (CS) and matrix completion (MC) were used, while their effects on the quality of the MRF parameter maps were studied in simulations and experiments. Average relaxation times in the eye were measured in 6 healthy volunteers. One uveal melanoma patient was included to show the feasibility of MRF in a clinical context. RESULTS: Simulation results showed that an MC-based reconstruction enables large undersampling factors and also results in more accurate parameter maps compared with using CS. Experiments in 6 healthy volunteers used a reduction in scan time from 7:02 to 1:16 min, producing images without visible loss of detail in the parameter maps when using the MC-based reconstruction. Relaxation times from 6 healthy volunteers are in agreement with values obtained from fully sampled scans and values in literature, and parameter maps in a uveal melanoma patient show clear difference in relaxation times between tumor and healthy tissue. CONCLUSION: Cartesian-based MRF is feasible in the eye at 7T. High undersampling factors can be achieved by means of MC, significantly shortening scan time and increasing patient comfort, while also mitigating the risk of motion artifacts.


Asunto(s)
Compresión de Datos/métodos , Neoplasias del Ojo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Melanoma/diagnóstico por imagen , Neoplasias de la Úvea/diagnóstico por imagen , Algoritmos , Artefactos , Simulación por Computador , Estudios de Factibilidad , Voluntarios Sanos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Riesgo
17.
Magn Reson Med ; 79(5): 2629-2641, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28905413

RESUMEN

PURPOSE: To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. METHODS: The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. RESULTS: Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. CONCLUSIONS: The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Medios de Contraste/farmacocinética , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Hígado/metabolismo , Adulto , Algoritmos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen
18.
Magn Reson Med ; 79(5): 2676-2684, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28913838

RESUMEN

PURPOSE: Both dynamic magnetic resonance angiography (4D-MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D-MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D-MRA and perfusion imaging using time-encoded pseudo-continuous arterial spin labeling. METHODS: The time-encoded pseudo-continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D-MRA acquisition. After the entire labeling module, a multishot 3D turbo-field echo-planar-imaging readout was executed for the 4D-MRA acquisition, immediately followed by a single-shot, multislice echo-planar-imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo-field echo-planar-imaging readout was investigated by evaluating the image quality of the 4D-MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. RESULTS: When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo-field echo-planar-imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time-encoded pseudo-continuous arterial spin labeling. CONCLUSIONS: This study demonstrated that simultaneous acquisition of 4D-MRA and perfusion images can be achieved by using time-encoded pseudo-continuous arterial spin labeling. Magn Reson Med 79:2676-2684, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Magn Reson Med ; 79(4): 1922-1930, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28736949

RESUMEN

PURPOSE: The aim of this study was to propose, optimize, and validate a pseudo-continuous arterial spin labeling (pCASL) sequence for simultaneous measurement of brain perfusion and labeling efficiency. METHODS: The proposed sequence incorporates the labeling efficiency measurement into the postlabeling delay period of a conventional perfusion pCASL sequence by using the time-encoding approach. In vivo validation experiments were performed on nine young subjects by comparing it to separate perfusion and labeling efficiency sequences. Sensitivity of the proposed combined sequence for measuring labeling efficiency changes was further addressed by varying the flip angles of the pCASL labeling radiofrequency pulses. RESULTS: The proposed combined sequence decreased the perfusion signal by ∼4% and a lower labeling efficiency (by ∼10%) was found as compared to the separate sequences. However, the temporal signal-noise-ratio of the perfusion signal remained unchanged. When the pCASL flip angle was decreased to a suboptimal setting, a strong correlation was found between the combined and the separate sequences for the relative change in pCASL perfusion signal as well as for the relative change in labeling efficiency. High correlation was also observed between relative changes in perfusion signal and the measured labeling efficiencies. CONCLUSION: The proposed sequence allows simultaneous measurement of brain perfusion and labeling efficiency with high time-efficiency at the price of only a small compromise in measurement accuracy. The additional labeling efficiency measurement can be used to facilitate qualitative interpretation of pCASL perfusion images. Magn Reson Med 79:1922-1930, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Arterias/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Angiografía por Resonancia Magnética/métodos , Adulto , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Neuroimagen/métodos , Perfusión , Reproducibilidad de los Resultados , Relación Señal-Ruido , Marcadores de Spin
20.
Magn Reson Med ; 79(3): 1334-1344, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28626998

RESUMEN

PURPOSE: To propose a large coverage black-bright blood interleaved imaging sequence (LaBBI) for 3D dynamic contrast-enhanced MRI (DCE-MRI) of the vessel wall. METHODS: LaBBI consists of a 3D black-blood stack-of-stars golden angle radial acquisition with high spatial resolution for vessel wall imaging and a 2D bright-blood Cartesian acquisition with high temporal resolution for arterial input function estimation. The two acquisitions were performed in an interleaved fashion within a single scan. Simulations, phantom experiments, and in vivo tests in three patients were performed to investigate the feasibility and performance of the proposed LaBBI. RESULTS: In simulation tests, the estimated Ktrans and vp by LaBBI were more accurate than conventional bright-blood DCE-MRI with lower root mean square error in all the tested conditions. In phantom test, no signal interference was found on the 2D scan in LaBBI. Pharmacokinetic analysis of the patients' data acquired by LaBBI showed that Ktrans was higher in fibrous tissue (0.0717 ± 0.0279 min-1 ), while lower in necrotic core (0.0206 ± 0.0040 min-1 ) and intraplaque hemorrhage (0.0078 ± 0.0007 min-1 ), compared with normal vessel wall (0.0273 ± 0.0052 min-1 ). CONCLUSION: The proposed LaBBI sequence, with high spatial and temporal resolution, and large coverage blood suppression, was promising to probe the perfusion properties of vessel wall lesions. Magn Reson Med 79:1334-1344, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Anciano , Algoritmos , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/patología , Simulación por Computador , Medios de Contraste , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...